* Your all information are secured.
- MATERIALS
- PRODUCTS
- SERVICES
- MANUFACTURING SERVICES
- INDUSTRIES
- UPLOAD 3D FILE
- STARTUP ACCELERATOR PROGRAM
- CONTACT US
* Your all information are secured.
Source : Zeal 3D
Source : Zeal 3D
Source : Zeal 3D
Source : Zeal 3D
Source : Zeal 3D
Source : Zeal 3D
Source : Freepik.com(Licensed)
Source : Freepik.com(Licensed)
Source : Freepik.com(Licensed)
Source : Freepik.com(Licensed)
Source : Freepik.com(Licensed)
Source : Zeal 3D
Source : Zeal 3D
Source : Zeal 3D
3D printing is a process of creating three dimensional (3D) objects using advanced printing and manufacturing technology directly from a digital file format. A layer system is used to print digital files in this additive manufacturing. The advanced 3D print has enabled the whole industry to print complex shapes and objects in high quality using less material.
3D Printing is completely different from traditional printing. An object printed by a 3D printer has different visible layers in the form of sliced sections. On the other side, traditional printing or manufacturing technology uses subtractive manufacturing methods for the same purpose. Those traditional methods cost more as compared to advanced 3D technology because they require more material.
3D printing technology can be classified in many ways, but majorly there are nine types of 3D printing. All these types of 3D print design can be classified further into subtypes. These nine types of 3D Print are Stereolithography (SLA), Material Jetting, Fused Deposition Modeling (FDM), Laminated Object Manufacturing (LOM), Electron Beam Melting (EMB), Binder Jetting (BJ), Digital Light Processing (DLP), Selective Laser Melting (SLM), and Selective Laser Sintering (SLS).
Most of the time 3D print is used for rapid prototyping, still, there are different uses of it. Stereolithography (SLA) is the common type used mostly in the industry. Selective Laser Sintering (SLS) uses nylon powders and plastic, and DLP or Digital Light Processing is a method in which liquid resin is cured using a light. Similarly, all of these types are different from each other according to the process.
The 3D printing process is divided into three parts. The first part is where the 3D model is designed using 3D software by designers and engineers. There are several CAD and 3D software products there in the market. This software generates an STL file of the finalized design, which is readable by a 3D printer. In the second phase, the printing machine starts printing layers of the model or object. After all of the layers are successfully printed, then the last and third phase consists of post-production work to give the desired look to the print.
Rapid prototyping is a process in which a rapid design of the desired product is made to test the design and make improvements. From the desired product’s design to its physical form and many other factors are tested with the help of rapid prototyping services. It is most commonly used to test new ideas at the initial stage.
Rapid manufacturing is slightly different from prototyping because here the finalized product is manufactured using solid freeform manufacturing, direct digital manufacturing etc. In rapid manufacturing, not only the design but also the real-world usage of the product is tested.
The whole manufacturing industry is transformed with 3D printing. Almost every sector is utilizing the pros of 3D printing. Following are some of the major 3D printing advantages.
Almost all industries are using 3D printing for various purposes. Automobile, Healthcare, Aerospace, Manufacturing, Textiles, Robotics, etc. are some of the major ones to count.
Various technologies are used under the main 3D printing technology or additive manufacturing technology. Some of these technologies are mentioned below.
STEREOLITHOGRAPHY (SLA)
It is the world's oldest 3D printing technology invented in 1986. Vat Polymerization is the method used to print with this technology. Photopolymer resin is the material used to be cured by a light source.
DIGITAL LIGHT PROCESSING (DLP)
This technology is also used in 3D printing and the machines used are also similar to the above mentioned SLA technology. But here a light source is projected to the layers via LED screens.
OTHERS
Other technologies used in the 3D printing process are Fused Deposition Modeling (FDM), Selective Laser Sintering (SLS), Material Jetting (MJ), Drop On Demand (DOD), etc.
Different 3D printing materials are used in different industries. It depends upon the usage of the final product. Following are some of the most used materials for a 3D print.
All of these materials have different properties. They are used for different purposes according to the type of product that is being manufactured. They have different pros and cons of making a 3D print on them.
Stereolithography or SLA 3D printing is one of the major types of 3D printing used. It is the oldest and most advanced technology. If we talk about industrial 3D printing, then the SLA 3D printing process is the only technology that matches industry standards.
The major features and benefits of SLA are that it provides more detailing, smooth surface finishing and high tolerance to the final product. From design to functionality, SLA parts are always a step ahead of other commercial 3D printing technologies. Various 3D printers are used in the SLA process to manufacture high quality, flexible and industry-level products.
Selective Laser Sintering or SLS 3D printing is more preferred for functionality testing prototypes. In this technology nylon powders and solid plastic materials are used. Compared with SLA, SLS parts are stronger inbuilt quality. But the finish and surface smoothness is not that good. That is why the SLS process is preferred more for rapid manufacturing prototypes because it manufactures durable parts. Most of the time, SLS printing technology is used for functionality testing. It makes 3D printing easy, because the process doesn't require any support structure, and it can also be used to build multiple nested parts together.
FDM 3D printing or Desktop 3D printing technology, the material is printed in 3D design using the same layer system. But the only difference is that in FDM a plastic material is used to make the design. Due to its cost-effective and easy to use features, this technology is most preferred by many small industrial units. There is a huge demand for this technology due to its low cost and fast process, as compared to other 3D printing technologies.
Plastic 3D printing is also used in prototyping. In many manufacturing units, before manufacturing the final product with the expensive material, FDM 3D printing is used to make plastic parts. It reduces the cost of production because there is no wastage of the original expensive material.
Polyjet 3D printing is a technology that uses photopolymer and UV light. Both of these major elements of this technology are used for 3D print. In this technology a photopolymer is used to make a 3D print on the object and later on UV light is passed on to the design to make it solid.
As similar to other 3D printing technologies, it also manufactures 3D models in a layering system. PolyJet or MultiJet 3D printing technology is well known for the accuracy that it provides in 3D prints. Most of the time PolyJet printing is preferred for quick prototypes.
Metal printing was the most complex thing that traditional technologies were facing in the industry. But 3D metal printing has now changed the complexity into flexibility. With the help of this technology, it is very easy for various industries to manufacture 3D metal parts.
From functional to non-function models, metal parts are always required in high quality and durability. But traditional manufacturing and printing technologies were not capable of manufacturing high-end 3D metal parts easily. That is why 3D metal printing is in huge demand in various industries like automotive, aerospace, etc.
There are many benefits of 3D metal printing. From cost to manufacturing ease and time, everywhere you will find that 3D printed metal parts are performing well as compared to the traditional technologies. The first benefit that you will get is the non-compromising quality of the metal. The quality of the metal is never compromised while printing using 3D technology. Other than this, there will be no wastage of the material while manufacturing 3D printed metal parts. Complexity is never an issue in 3D metal printing. Complex designs can be easily manufactured with the help of this advanced technology.
Different types of 3D metal printing technologies are used in different industries. Following are some of the most common and major types.
Direct Energy Deposition
A metal feedstock and a laser are used in this type of 3d metal printing.
Powder Bed Fusion
In these types of metal printing machines, a powder bed layer is spread and then a cross-section is used to make 3d prints.
Binder Jetting
For quick manufacturing at a high scale, Binder Jetting is always at the top among all the other types of 3D metal printing technologies.
Bound Powder Extrusion
There is no loose powder used in this technology. The powder is extruded in a bound form with the help of polymers.
We can see the use of 3D metal printing everywhere in different industries. Manufacturing industries are the top users of 3D metal printing technologies. Because there are several benefits of 3D metal printing that manufacturing units need. Following are the major 3D metal printing applications.
There are different 3D printing materials used for metal printing. It depends upon the usage of the product in the real world. Following are some of the most used metal 3D printing materials.
Titanium
Titanium material is used for its high mechanical properties and low weight.
Aluminium
For low weight products with high thermal properties, Aluminium is preferred among other metal 3D printing materials.
Stainless Steel
Good strength products are manufactured using stainless steel in 3d metal printing.
Inconel
High thermal resistance up to 700-degree celsius is a major benefit that Inconel has. No other metal 3D printing materials have such high thermal resistance.
There are several 3D metal printing technologies used in various industries. All of them work differently. But most of the time 3D metal parts are manufactured using powder beds. The metals are used in powder form and they are extruded on beds to form up the final product. The 3D metal printing process can be different for different materials and technologies. Laser lights or UV lights are also used in some methods while manufacturing metal 3D print. Various lights are projected to the powder beds using various LED screens.
3D technology has transformed the manufacturing industry and the biggest role player in this transformation is metal 3D print technology. There are several types of metal 3D printing technologies. The most commonly used technologies are powder bed technologies. In this type of 3D metal printing, metals are in powder form. After a special process, the powders are turned into a solid metal product. In some cases, laser lights are used and in some cases, other materials are used while processing the powder form of metals. Binder Jetting and laser metal deposition technologies are also commonly used in 3D metal prints.
Selective Laser Melting (SLM) is used to print alloy metals and this technology is a common one in metal printing technologies. Similar to the other metal printing technologies, the metal is in a fully melted form of powder. A laser is projected on the metal and it goes on the piece of metal to turn it in the shape of the final 3D model layer by layer. Gases like Nitrogen and Argon also play a significant role in Selective Laser Melting technology. Supports are used in this technology while printing 3d models, SLM is more suitable for metals like aluminium.
3Direct Metal Laser Sintering (DMLS) is similar to the Selective Laser Melting technology. In DMLS, there is also a laser sintering process used on powder beds. But the only difference between this 3D metal technology and SLM metal printing is the powder form of the metal. In DMLS 3D printing technology there is no fully melted metal in powder form. So it also takes less time to get to the normal temperature after the laser work is finished. It is good to use DMLS metal 3D printers for manufacturing mechanical parts.
Most people get confused about Directed Energy Deposition (DED) and Fused Deposition Modeling (FDM) processes. The basic work mechanism of both of these metal 3D printing techniques is similar. But still, some factors make both of these technologies differ from each other.
In DED 3D printing technology, the feedstock is fused through a nozzle and the powder is melted to form the final 3D model. After the powder is melted there are lasers used in this process for consolidations. For more complex shapes and geometries, the position of the substrate can be shifted from 3-axis systems to 5+ axis systems.
Similar to the other metal 3D printing method, powder metal is used to form 3D print models in Binder Jetting. The only difference is that there is a binding agent used in this process. An inkjet head is used to extrude a liquid binding agent on the powder metal. This whole process continues till the desired model is not manufactured according to the CAD file.
Completely different from other technologies, Binder Jetting 3D printing technology requires a separate consolidation process after the manufacturing process. This process is required to remove the risk of porosity. Also, it is important to conduct such a process to make the metal achieve its mechanical properties.
Metal casting technology is a type of additive and subtractive manufacturing. As its name suggests, in this type of manufacturing, metals are cast into different models. From manufacturing master models to plaster moulds, this technology has several steps before the finalized model manufacturing.
It is also known as Lost-wax casting in which a master model is built up using wax. This master model is a perfect replica of the final required product. After the master model is ready in this process, there are plaster moulds poured into this master model. Now the last stage is where the metal is injected into the mould which is 3D printed in wax to make the final product.
A 3D model is a digital file stored on a computer that contains the digital data of a 3D print-ready product. The file format used to save a 3D model on a computer is STL. An STL file consists of all the mathematical details related to a 3D model design. These designs are created using different CAD or 3D printing software. This software is used to create 3D printing designs.
The G-code files section of CAD software will allow you to upload 3D files. Simply clicking on the “upload G-code file” button will open up the file explorer, and then you will have to choose your 3D design file. After successfully uploading the file, it will be ready for print.
STL file is a digital file used to store details of a 3D model. STL stands for Standard Tessellation Language. Also, it has been given the name of Standard Triangle Language by some 3D designers and engineers. This file format is created, read, and used by only CAD or 3D software. The majority of the software and machinery use STL files for 3D printing. 3D STL files consist of all the details about a 3D model in mathematical and geometrical form. These files are created using various CAD designing Softwares and later on, they are uploaded to the 3D printing machines to print 3D models.
Multi Jet Modeling or MJM 3D printing technology is used in various sectors for rapid prototyping. However this technology is not only limited to rapid prototyping, and it is also being used for some other purposes. But most of the time, MJM additive manufacturing is considered suitable for rapid prototyping only.
Wax-based thermoplastic is used as the material of 3D print in this manufacturing. A machine head is installed in the machine which is full of linear arranged nozzles. These nozzles are used to extrude thermoplastics to make plastic-based models. This technology is most widely used for rapid prototyping.
PLA material or PLA plastic is natural and easy to recycle plastic material used in 3D printing as a filament. There are different materials used for 3D printing and most of them are artificially created and harmful to nature such as ABS. But PLA 3D printing is more natural because the PLA plastic is made up of natural extract of various natural products such as plants, roots, etc. That is why PLA plastic definition is given as renewable plastic or natural plastic in the industry. Also, PLA is considered as more capable in strength when we compare ABS or PLA plastic. However other plastics or materials are more capable of heat resistance as compared to PLA.
Injection molding or plastic molding is a manufacturing process used widely in various manufacturing industries. In this technology, an injection moulding machine is used to inject the melted plastic material into the moulds. The whole manufacturing process starts with creating injection moulds of various materials. After creating the perfect master mould, the melted material is injected into the injection mould to manufacture the desired product.
Plastic injection moulding is widely used in manufacturing units where mass production is required. From household items to various other parts, injection mould machines are used to produce low cost and standard quality products.
There are many advantages of injection molding. But if we talk about the major advantage of injection molding, then cost-effective and mass manufacturing processes are the major ones to count. Injection molded manufacturing makes it possible for the manufacturing unit to produce products at a cheaper cost and with pace. So they will be more productive at a cheap rate, which will increase the revenue of any industry. Scalability is another benefit that a manufacturing unit can get if it uses injection molded manufacturing. It is easy to scale up manufacturing in this technology.
The injection molding process is very simple and carried into three basic steps. The first step in this method is to create a master mould. After that in the second step, plastic moulds are created with the help of plastic material. In the last and the third step melted material is injected into the moulds for mass manufacturing. The process of manufacturing is completed in these three steps. However, some post-production works remain after this basic manufacturing. But injection molding makes it easy to manufacture complex shapes in easy steps.
There are different plastic injection molding machines used in various sectors for injection molding based manufacturing.
Hydraulic Plastic Injection Molding PLC Machine
This injection molding machine is powered by a Hydraulic system. They are more preferred for the manufacturing of complex 3D models.
Electric Plastic Injection Molding PLC Machine
Powered by electric energy and most commonly known for faster production as compared to its counterparts. These machines are used for fast production with energy-efficient modes.
Hybrid Plastic Injection Molding PLC Machine
Hybrid plastic injection molding PLC machine provides a mixture of both of the above-mentioned machines.
CNC technology is used to remove manual or man-made errors from the manufacturing industry. In CNC machining, a set of instructions are given to the manufacturing and production machines via computer programs. A special computer or digital machines are attached to the traditional manufacturing machines like Lathe, Milling machines, etc. These days almost every production unit uses a CNC milling machine or CNC lathe machine rather than using traditional and manual machines. There are no manual instructions in CNC machining technology, hence there are no errors while manufacturing complex parts.
The manufacturing and production industry is most impacted by CNC machining. Almost every manufacturing unit is using CNC service for manufacture and production. Following are some of the major CNC machining technology applications.
Automobile parts production.
Production tool production.
Complex shape productions.
Consumer electronic equipment.
Musical instruments.
Medical & Healthcare equipment production.
Production of parts with tight tolerance such as pistons, shafts, valves & pins.
High standard prototypes for design and functionality testing.
CNC machining can be combined with any other manufacturing technology to automate the process of manufacturing. It makes the manufacturing process error-free and fast because no human intervention is required.
CNC machining has completely transformed the manufacturing industry with its several advantages. Following are some of the major benefits that CNC machining technology provides.
• CNC service can reduce the cost of production.
• CNC can reduce the time consumed in production.
• It makes it easy to manufacture complex shapes because it is computerised technology.
• The whole process is automatic, so less manpower is required.
• Very few chances of errors are there in CNC machining.
Vacuum casting is a substitute for casting technology. There are many casting techniques used in the manufacturing industry and Vacuum casting is one of them. In this, a melted material is cast into the mould using a vacuum to make it in the required shape. This simple method has many more things to consider. This method is considered the best one if there are issues of air entrapment. Different filaments are used in vacuum casting from plastics to fibre. Vacuum casting metal is also used to cast metal parts using a vacuum. This technology is also known as reproduction technology because it casts or produces new parts from the moulds.
The vacuum casting process consists of different steps. From the master model pattern to silicone mold and casting gates, there are different resources used in this formative manufacturing process. The whole process starts with making a master model pattern. After that, a master mould is produced using Stereolithography technology.
Now the casting frame is fixed on the machine and a casting gate is used to fix the master mould. Using a vacuum, a melted material is poured into the casting mould. Melted material can be anything according to the requirement.
The vacuum casting process consists of several steps in which the master mould is built using Stereolithography technology or Sintering technology. After that, the vacuum machines are used to pour the melted filament into the master mould. In some cases, the silicone mold is also used. The material of the filament depends upon the manufacturing requirements. Laser sintering or Stereolithography technology is used to make master moulds because it provides high-end finishing and a smooth surface, which brings quality to the final product.
From prototypes to mass manufacturing, there are different applications of vacuum casting. Following are some of the major uses of vacuum casting.
• Creating prototypes for design and functional testing.
• Less durable ornaments production
• Medical equipment manufacturing.
• Automotive parts production.
• Functional testing of aerospace parts and their integration.
• Prototypes for demonstration.
Polypropylene (PP)
Polypropylene or PP is mostly used in vacuum casting because it is very easy to mould it into any shape.
Polycarbonate (PC)
This material is used because it provides high resistance along with transparency.
Rubber
Tear strength is the key property of rubber and it is used just because of it. It is used to make seals, airtight parts & more.
Glass-filled materials
Rigidity and strength are the key properties of glass-filled materials such as polymers.
Acrylonitrile Butadiene Styrene (ABS)
Acrylonitrile butadiene styrene is most widely used because it is a low-cost material and keeps the manufacturing cost under the belt.
From cost-effective production to high-quality production, there are several advantages associated with vacuum casting. Following are some major vacuum casting benefits.
• A variety of materials can be used in production in vacuum casting.
• Air entrapment is no longer an issue in vacuum casting.
• Mass production can be made easier in vacuum casting.
• High end finishing and smoothening to the final products.
• Quick turnaround time as compared to injection moulding.
• In most cases, there is no post-production work required.
• It is easy to scale up any manufacturing process with vacuum casting technology.
Various industries are facilitated with vacuum casting use. There are several vacuum casting applications. Following are some of them.
Vacuum casting is widely used to make plastic prototypes in various industries.
Prosthetic and medical equipment are prototyped and manufactured using vacuum casting.
Ornaments with less durability are manufactured using vacuum casting.
Decorative items are manufactured using vacuum casting.